Решение: рассмотрим функцию f(x)=sin x-x*cos(x) на промежутке [0; pi\2]. она непрерывна на этом промежутке и для каждого х из этого промежутка существует проиводная. ищем проиводную: f’(x)=cos x-cos x+x*sin x=x*sin x f’(x)> 0 на промежутке (0; pi\2),значит f(x) возрастает на (0; pi\2), f(0)=sin 0+0*cos 0=0 f(0)=0 значит при х є (0; pi\2) f(x)> f(0)=0 или sin x-x*cos(x)> 0, то есть sinx> xcosx, что и требовалось доказать.
Ответ дал: Гость
домнажаем всё на 2 получается 14-х=6+7х
-х-7х=6-14
-8х=6-14
-8х=-8
х=1
Ответ дал: Гость
48*27=16*3*27=16*81
то есть корень 4 степени извлекаем из 2 вчевертой степени умноженное на 3 в четвертй степени
Популярные вопросы