Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
при решении будем использовать замену одного числа эквивалентным ему по модулю 17, то есть при делении на 17 тот же остаток.
разложим на множители 3x+3y=3(х+у)
1)2y’xy(1+x^2)=1+y^2
2y\(1+y^2)dy=1\(x(1+x^2)) dx
ln(1+y^2)= ln корень((x^2\(x^2++с, с- любое
1+y^2=с*корень((x^2\(x^2+1)) c* -действительное число больше 0
инт 1\(x(1+x^2)) dx=|t=x^2 dt=2xdx|=1\2 инт 1\(t(1+t)) dt=
1\2 инт (1\t-1\(1+t)) dt=1\2 инт ln|t\(t+1)|= ln корень((x^2\(x^2++с
ответ: 1+y^2=с*корень((x^2\(x^2+1)) c* -действительное число больше 0
2) xy’+xe^(y/x)-y=0
y=tx, t=y\x
y'=t+xt'
x(t+xt')+xe^t-xt=0
x^2 *t'+xe^t=0
xt'=-e^t
-dt\e^t=1\xdx
e^(-t)=ln|x|+c
e^(-y\x)=ln|x|+c c -действительное число больше 0
ответ: e^(-y\x)=ln|x|+c c -действительное число больше 0
з.і.вроде так
Популярные вопросы