формула корней- х1=(-b+корень(b^2-16c))/8 x2=(-b-корень(b^2-16c))/8 так как 0,5=1/2,то 1/2=(-b+корень(b^2-16c))/8 с=(-b-корень(b^2-16c))/8
. -b+корень(b^2-16c)=4 -b-корень(b^2-16c)=8c
складываем эти 2 уравнения получаем -2b=4+8c b=-2(1+2с)=-2-2c . значение b подставляем в один из этих уравнении.
-2с)--2с)^2 -16c)=8c
корень(4+8с+4с^2-16c)=2+2c-8c
корень((2с-2)^2)=2-6c
2c-2=2-6c или 2с-2=6с-2
-4с=4 или -4с=0
с=-1 или с=0
теперь находим b
b=-2-2*(-1)=4 или b=2
Ответ дал: Гость
b1=-32 и q=1/2
b7= b1*q^6
b7=-32*(1/2)^6=-32/(1/64)=-2048
Ответ дал: Гость
sin²α+cos²α=1
sin α = ± √(1-cos²α)
учитывая, что 0< α< π/2 (это первая четверть), синус будет положительным. имеем:
sin α =
ответ. 4/5
Ответ дал: Гость
понятно, что нулей в таблице нет. значит, чтобы произведение в строке было отрицательным, то отрицательных чисел должно быть нечётное количество в каждой из строк. т.к. строк нечётное число, то всего нечётных чисел тоже нечётное число. если бы в каждом столбце было положительное произведение, то отрицательных чисел было бы чётное количество. получаем противоречие, из которого следует, что хотя бы в одном столбце произведение чисел нечётное.
Популярные вопросы