пусть имеем три последовательных натуральных числа: x, (x+1), (x+2),
тогда по условию
x^2+65=(x+1)(x+2)
x^2+65=x^2+2x+x+2
3x=63
x=21,
то есть числа соответственно равны 21; 22; 23
Ответ дал: Гость
(x^(4))/(x^(2)-2) + (1-4x^(2))/(2-x^(2)) + 4 = 0, все к общему знаменателю х^2-2, получим (х^4+4х^2-1+4х^2-8)/х^2-2=0,
х не может быть равен корню, из двух, т.к. в противном случае знаменатель будет равен 0, а на 0 делить нельзя; в числителе получилось х^4+4х^2-1+4х^2-8=0, х^4+8х^2-9=0, х^2=у, подставим в уравнение и получим
у^2+8у-9=0,
д=64-4*1*(-9)=64+36=100
у1=(-8+10)/2*1=1
у2=(-8-10)/2*1=-9 (неудовл, т к в квадрате не может получится отрицательное число)
Популярные вопросы