проведем радиус сферы в точку соприкосновения шара с цилиндром. угол между этим радиусом и осью цилиндра (проходящего через центр сферы) обозначим как a.
радиус оснвания цилиндра равен = r sin a
расстояние от центра сферы до основания цилиндра = r cos a
высота цилиндра в два раза больше расстояния от центра сферы до основания цилиндра, т.е. = 2r cos a
значит объем цилиндра равен v = pi (r sin a)^2 * 2r cosa = pi r^3 * sin^2 a * cos a
найдем максимум путем дифферинцирования ф-ции объема
v' = pi r^3 ([1-cos^2 a] cos a)'
т.е. максимум достигается при sin^2 a = 2/3
объем сферы = 4/3 pi r^3
отношение объемов = ( 4/3 pi r^3 ) / ( pi r^3 * sin^2 a * cos a ) = 4 / (3 * sin^2 a * cos a) =
2 / cos a = 2 sqrt(3)
ответ:
Спасибо
Ответ дал: Гость
Решается с конца. так как после третьего перехода у бездельника денег не осталось, то после перехода моста в третий раз у него было 24 рубля, а до перехода третьего моста – 12 рублей. тогда после перехода второго моста у бездельника было 12 + 24 = 36 (рублей), а до перехода второго моста – 36 : 2 = 18 (рублей). рассуждая аналогично, получим, что после перехода первого моста у бездельника стало 18 + 24 = 42 (рубля), а перед переходом первого моста – 42 : 2 = 21 (рубль). таким образом, у бездельника сначала был 21 рубль. ответ. 21 рубль.
Популярные вопросы