отношение периметров подобных треугольников равно коэффициенту подобия если bm : am = 1 : 4, то bm : ba = 1 : 5 = k (коэффициент подобия) соответственно p(bmk) : p (bac) = k = 1 : 5, отсюда p(bmk) = p(bac) : 5 = 5
Ответ дал: Гость
Пусть abcd – ромб, bd=52- меньшая диагональ, bh=48- высота треугольник bdh- прямоугольный, угол bhd=90° по теореме пифагора hd=sqrt((bd)^2-(bh)^2)=sqrt(2704-2304)=sqrt(400) hd=20 треугольник abh- прямоугольный, угол bha=90° по теореме пифагора (ab)^2=(ah)^2+(bh)^2 ab=ad – стороны ромба ah=ad-hd=ad-20=ab-20 тогда (ab)^2=(ab-20)^2+(bh)^2 (ab)^2=(ab)^2-40*ab+400+2304 40*ab=2704 ab=ad=67,6 sabcd=ad*bh=67,6*48=3244,80
Ответ дал: Гость
1)cosb=bc/ab
ab=bc/cos30=18/(кв корень из 3/2)=12*кв корень из 3
2)sinb=ac/ab
ac=sin30*ab=0.5*12*кв корень из 3=6*кв корень из 3
Популярные вопросы