Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
ab || bc - по определению трапеции
угол boc = углу aod, как вертикальные
угол bca=углу cab и угол cbd= углу bda, как углы между паралелльными прямимы,
то есть треугольники aod и cob подобные за тремя углами
треугольник abc.
центр вписанной окружности о лежит на пересечении биссектрисс ak, bf, cn.
т.к. треугольник правильный, его биссектриссы - медианы и высоты.
искомый радиус это отрезки ok=of=on, они равны 1/3 биссектриссы (по св-ву медиан, пересекаются и делятся в отношении 2: 1 считая от вершины)
радиус равен 21/3=7
1. обозначим углы треугольника авс буквами а, в и с.
а: в: с=2: 3: 4, значит а=2х, в=3х, с=4х
а+в+с=180 град, т.е. 2х+3х+4х=180
9х=180
х=180: 9
х=20 (град)
а=2х=2*20град=40 град
в=3х=3*20 град=60 град
с=4х=4*20 град=80 град
ответ: 40, 60, 80.
2.обозначим катеты прямоугольного треугольника буквами а и в.
по условию а: в=7: 12, значит а=7/12 в
площадь треугольника равна 168 см кв.
s=1/2 * ab
1/2*ab=168
ab=168*2=336(см кв)
7/12 в*в=336
в*в=336: 7*12
в*в=576
в= корень из 576
в=24 (см)
а=7/12 в=7/12 *24 =14 (см)
ответ6 14 см и 24 см
пусть ав = h, проведем еще высоту ск = h. тогда из пр. тр-ка cdk:
сd = 2h/кор3, dk = h/кор3. ak = bc = 8 - (h/кор3).
если в трапецию можно вписать окр-ть, то суммы противоп. сторон равны.
ad+bc = ab + cd или:
8 + 8 - (h/кор3) = h + (2h/кор3). найдем h:
h = (16кор3) / (3 + кор3). теперь распишем площадь:
s = (a+b)*h/2 = (8+8-(16/(3+кор3)) * (8кор3)/(3+кор3)
h = 128(3+2кор3) / (3+кор3)^2 = 128(3+2кор3) / 6(2+кор3). домножим и числитель и знаменатель на (2-кор3).
h = 64(6+кор3 - 6)/3 = (64кор3)/3.
ответ: (64кор3) / 3
Популярные вопросы