Определяем радиус описанной окружности r=(1/2)*sqrt(a^2+b^2) определяем длину окружности l=2*pi*r=pi*sqrt(a^2+b^2)
Ответ дал: Гость
решение. обозначим трапецию как abcd. обозначим длины оснований трапеции как a (большее основание ad) и b (меньшее основание bc). пусть прямым углом будет ∠a. площадь прямоугольника, стороны которого равны основаниям трапеции, будет равна s = ab из вершины c верхнего основания трапеции abcd опустим на нижнее основание высоту ck. высота трапеции известна по условию . тогда, по теореме пифагора ck2 + kd2 = cd2 поскольку большая боковая сторона трапеции по условию равна сумме оснований, то cd = a + b поскольку трапеция прямоугольная, то высота, проведенная из верхнего основания трапеции разбивает нижнее основание на два отрезка ad = ak + kd. величина первого отрезка равна меньшему основанию трапеции, так как высота образовала прямоугольник abck, то есть bc = ak = b, следовательно, kd будет равен разности длин оснований прямоугольной трапеции kd = a - b.то есть 122 + (a - b)2 = (a + b)2 откуда 144 + a2 - 2ab + b2 = a2 + 2ab + b2 144 = 4ab поскольку площадь прямоугольника s = ab (см. выше), то 144 = 4s s = 144 / 4 = 36 ответ: 36 см2 .
Ответ дал: Гость
v=4/3 *пи*r^3
d1=4 cm, d2=6 cm
r1=2 cm, r2=3 cm
v1=4/3*пи*2^3=32пи/3
v2=4/3*пи*3^3=108пи/3
v=v1+v2=32пи/3 +108пи/3=140пи/3
4/3*пи*r^3=140пи/3
r^3=140: 4
r^3=35
r=sqrt(3){35}
d=2r=2sqrt(3){35}
Ответ дал: Гость
если бы вершина параболы лежала в начале координат, то каноническое уравнение параболы:
x^2 = 2py.
уравнение директрисы у = -p/2 = 5, отсюда р = -10 и:
x^2 = -20y.
но в нашем случае вершина параболы смещена по оси х влево на (-1) и по оси у на величину b, которую и найдем:
(x+1)^2 = - 20(y + b).
подставим сюда координаты заданной точки:
36 = -20(b-1), -20b = 16, b = - 4/5.
теперь каноническое уравнение параболы примет вид:
Популярные вопросы