Пирамида правильная, значит в основании квадрат и боковые ребра равны между собой и равны l. высота проецируется в центр основания - точку пересечения диагоналей квадрата - о. so - высота пирамиды, ∠csd = α - плоский угол при вершине. если конус вписан в пирамиду, то его высота совпадает с высотой пирамиды, а основание - круг, вписанный в основание пирамиды. δcsd: по теореме косинусов cd² = cs² + ds² - 2cs·ds·cosα = l² + l² - 2·l·l·cosα = 2l²·(1 - cosα) cd = l√(2(1 - cosα)) радиус круга, вписанного в квадрат, равен половине стороны квадрата: r = cd/2 = l√(2(1 - cosα)) / 2 - радиус основания конуса. co = ac/2 = cd√2/2 = 2l√(1 - cosα)/4 = l√(1 - cosα) из треугольника cos по теореме пифагора so = √(sc² - oc²) = √(l² - l²(1 - cosα)) = l√cosα vц = 1/3 · πr² · so = 1/3 · π ·l²(2(1 - cosα))/4 · l√cosα = πl³ (1 - cosα)√cosα/6 воспользуемся формулой синуса половинного угла: 2sin²(α/2) = 1 - cosα: vц = πl³sin²(α/2)√cosα / 3
Ответ дал: Гость
s=а²
1)а₂²=2а₁²
а₂=√2а₁²=а₁√2
2)а₂²=9а₁²
а₂=√9а₁²=а₁3
Ответ дал: Гость
∆mda = ∆mdc, ∆ mcb = ∆ mab площадь поверхности пирамиды равна 2* s ∆ mda + 2* s ∆ mcb + s abcd dm ┴ cd по условию, тогда по теореме пифагора найдем mc: mc = 5√2 s∆mdc = ½ * cd * md = ½ * 5 * 5 = 25 /2 по теореме о трех перпендикулярах cm ┴ cb тогда s ∆ mcb = ½ * 5√2 * 5 = 25√2/2 s поверхности = 2* 25/2 + 2 * 25√2/2 + 25 = 50 +25√2 приблизительно равно 83
Популярные вопросы