Поскольку объем призмы равен произведению площади основания на высоту призмы, решение сводится к нахождению высоты призмы (так как площадь основания - площадь прямоугольного треугольника равна (1/2)*ав*вс=6). высота призмы равна высоте пирамиды в1авс, в которой боковые ребра равны, (то есть вв1=ав1=св1). если все боковые ребра пирамиды равны между собой, то вершина пирамиды в1 проецируется в центр описанной около основания окружности. центр описанной около прямоугольного треугольника окружности лежит на середине ас гипотенузы, радиус этой окружности равен половине гипотенузы. аа1с1с- квадрат, поэтому сс1=ас. вв1с1с - параллелограмм (боковая грань призмы), поэтому вв1=сс1=ас. по пифагору гипотенуза ас=√(ав²+вс²)=√(144+1)=√145. тогда радиус описанной окружности вн=(√145)/2. из прямоугольного треугольника внв1 найдем по пифагору в1н=√(в1в²-вн²)=√(145-145/4)=√435/2. тогда объем призмы равен sосн*h = (1/2)12*1*√435/2 =3√435см ≈ 62,6см³.
Ответ дал: Гость
Пусть длина стороны равна x см. т.к. у подобных треугольников стороны пропорциональны, то 8/12=12/18=x/24 x=16 ответ: 16 см
Ответ дал: Гость
полученный теуг-к амв- прямоугольный (угол амв=90). угол авм является смежным данному углу авс, значит авм=180-120=60. угол мав=180-(60+90)=30. а в прямоугольном треуг-ке катет, лежащий против угла 30 градусов равен половине гипотенузы, значит, вм=1/2ав=1/2 *18=9
Популярные вопросы