Пусть дана окружность с центром о и в нее вписан треугольник abc. соединим центр окружности о с вершинами a и b треугольника, а также опустим высоту оe на сторону ab с центра окружности. рассмотрим треугольник oeb, oe перпендикулярна ab, то есть угол oeb – прямой, ob=r (радиусу вписанной окружности) и oe=r/2 (по условию). тогда по теореме пифагора (eb)^2=(ob)^2-(oe)^2=r^2-r^2/4=3r^2/4 eb=r*sqrt(3)/2 рассмотрим треугольник aeo. он равен треугольнику oeb, поскольку ao=ob=r и oe- общая сторона. тогда и ae=r*sqrt(3)/2, а значит ab=ae+eb= r*sqrt(3)/2+ r*sqrt(3)/2=r*sqrt(3) поскольку в равносторонем треугольнике сторона равна r*sqrt(3), то и наше утверждение доказано
Ответ дал: Гость
пусть abcd-параллелограмм, о- точка пересечения его диагоналей.
треугольники abo, bco, cdo, dao равны по площади в силу фактов (диагонали паралелограмма делятся в точке пересечения пополам,
синусы смежных углов равны
площадь равна половине произведению сторон треугольника на синус угла между ними
соотвествующие вычислению площадей треугольников параметры равны, значит равны и сами площади)
так как площади равны, то площадь паралелограмма больше в 4 раза площади любого из этих треугольников,
Популярные вопросы