Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
правильный шестиугольник состоит из 6 равнесторонних треугольников,
рассмотрим один такой треугольник. в нм высота равна r, определим сторону этого треугольника, пусть она будет равна x, тогда по теореме пифагора
x^2+x^2/4=r^2 => 3x^2/4=r^2 => x^2=4r^2/3 => x=2r/sqrt(3)
тогда площадь треугольника = (1/2)*r*2r/sqrt(3)=r^2/sqrt(3)
а площадь многоугольника (правильного) = 6*r^2/sqrt(3)=r^2*sqrt(36)/sqrt(3)=r^2*sqrt(12)=2*sqrt(3)*r^2
что и надо было доказать
радиус окружности описанной вокруг многоугольника определяется по формуле
r=a/(2*sin(360/2*
откуда
а=2r*sin(360/2n)
для правильного треугольника
a=2*5*sin(60°)=10*sin(60°)=5*sqrt(3)
для правильного 9-угольника
a=2*5*sin(20°)=10*sin(20°)
для правильного 18-угольника
a=2*5*sin(10°)=10*sin(10°)
то есть
ab=5*sqrt(3)
bc=10*sin(20°)
cd=10*sin(10°)
вокруг четырехугольника можно описать окружность если сумы противоположных сторон равны, то есть
ab+cd=bc+ad
5*sqrt(3)+10*sin(10°)=10*sin(20°)+ad
ad= 5*sqrt(3)+10*sin(10°)-10*sin(20°)=
=5*sqrt(3)+10*(sin(10°)-sin(20°))
в1с1/а1в1=в2с2/а2в2
в2с2=а2в2*в1с1/а1в1=56*63/49=72
авс -основание, т.о пересечение высот, ар высота на вс, к вершина пирамиды
ар=3
ор=ра/3=1
ок==орtg45=1
r=1 вписанная окр
r=вс√3/6
вс=6/√3=2√3
sосн=ар*вс*0,5=3√3
рк=ор√2=√2
sбок=3*(кр*вс*0,5)=3*(√2*2√3*0,5)=3√6
sпол=sосн+sбок=3√3+3√6 см²
Популярные вопросы