центр описанной окружности лежит в точке пересечения серединных перпендиткуляров.при данных условиях центр окружности находится на середине гипотенузы=10см,следовательно радиус описанной окружности=10/2=5см
Ответ дал: Гость
треугольник авс - прямоугольный, т к ab²+bc²=ac²
сечение шара плоскостью треугольника окружность, описанная вокруг треугольника, т к на поверхности шара даны три точки а, в, с.
центр описанной окружности - лежит в середине гипотенузы
значит радиус r=ac/2=17/2
на расстоянии от верхней точки шара до плоскости радиус равен 17/2
тогда (r-√35/2)/8,5=r/r
r=8,5+√35/2
объем шара v=4πr³/3=4π(8,5+√35/2)³/2=3008,6π см³
Ответ дал: Гость
Площадь любого четырехугольника находится как половина произведения диагоналей на синус угла между ними. s = 1/2 · d₁ · d₂ · sin30° = 1/2 · 8 · 12 · 1/2 = 24 см²
Ответ дал: Гость
и внутренние и внешние касательные пересекутся в точках расположеных на прямой, проходящей через о1 и о2, исходя из полной симметрии относительно этой прямой.
пусть в1в2 - внешняя касательная (пересекает ось симметрии в точке а2 за меньшей окружностью)
с1с2 - внутренняя касательная ( пересекает ось симметрии в точке а1 между окружностями.
а1а2 = ?
а1а2 состоит из двух отрезков: а1о2 = х и о2а2 = у.
тр.о1с1а1 подобен тр. о2с2а1 (прямоугольные и одна пара равных углов).
Популярные вопросы