треугольник cdh прямоугольный. угол cdh=30 градусов => что ch=1/2 cd.
пусть ch=x ,тогда cd=2х. ab -высота. сн=ав. ав+cd=36 получаем что cd+ch=36. значит x+2x=36. отсюда х=12. высота найдена. найдем боковую сторону: 36-ch. сd=36-12=24. тк треугольник cdh прямоуг. тогда dh найдем по теореме пифагора: dh^{2}=cd^{2}-ch^{2}. получаем dh^{2}=24^{2}-12^{2}=576-144=432. dh=12\sqrt{3}. найдем нижнее(оно же большее основание) 8\sqrt{3}+12\sqrt{3}=20\sqrt{3}. найдем площадь трапеции: s=1/2*ad*bc. s= 1/2*8\sqrt{3}*20\sqrt{3}=240.
ответ: площадь s=240, высота ab=12.
Ответ дал: Гость
один угол - 90 градусов,другой соответственно 30 градусов (верхний) и 60 градусов нижний. биссектриса делит верхний угол на 20 и 10 градусов так как нижний угол - 60 градусов, то 110+60+х=180градусов, и значит угол будет состовлять 10 градусов.
Ответ дал: Гость
если около окружности описана трапеция, то трапеция равнобокая и сумма противоположных сторон ее равны, то есть сумма боковых сторон = 16 и сумма оснований тоже. откуда периметр равен 16+16=32
Ответ дал: Гость
радиус вписанной окружности: r = s/p,
радиус описанной окружности: r = abc/4s,
где s - площадь треугольника, р - полупериметр
площадь треугольника можно вычислить по формуле герона:
s= √p(p-a)(p-b)(p-c), где р - полупериметр
р = (18 + 15 + 15)/2 = 24 см
s = √24(24-18)(24-15)(24-15) = 108 cм²
радиус вписанной окружности: r = 108/24 = 4,5 см,
радиус описанной окружности: r = (18 * 15 * 15)/(4*108)= 9,375 см
Популярные вопросы