Пусть даны отрезок ав и точка m. из точки m проводим дугу, пересекающуюся с отрезком ab в точках k и n. ищем середину отрезка kn и соединяем ее с точкой m. как найти середину отрезка: пусть kn – данный отрезок. проведем две дуги, взяв за центры точки k и n. они пересекутся в двух точках р и q. проведем прямую pq. о – точка пересечения этой прямой с отрезком kn и есть искомая середина отрезка kn.
Ответ дал: Гость
рассмотрим треугольник со сторонами 13,14 и 15.,соответственно, угол алфа лежит против диагонали, по теореме косинусов его cos(alfa)=5/13,sin(alfa)=12/13следовательно, по формуле cos(alfa)=2*cos^2(alfa/2)-1cos(alfa/2)=3/sqrt(13)sin(alfa/2)=2/sqrt(13)sin(beta)=sin(alfa)=12/13cos(beta)=-5/13рассмотрим треугольник, отсекаемый биссектрисой с угламиalfa/2, beta и gamma при стороне 13.sin(180-gamma)=sin(gamma)=sin(alfa/2+beta)=sin(alfa/2)*cos(beta)+cos(alfa/2)*sin(beta)=2/sqrt(13)*(-5/13)+3/sqrt(13)*12/13=2/sqrt(13)значит угол gamma=alfa/2 и отсекаемый треугольник равнобедренный с двумя сторонами по 13.значит, его площадь равна: s=13*13*1/2*sin(beta)=6*13=78аналогично находится площадь другого треугольника.
Ответ дал: Гость
находим периметр
p=18+24+30=72
находим полупериметр
p=72/2=36
находим площадь по формуле герона
s=216
находим радиус
r=s/p
r=216/36=6см
находим площадь круга
s=36пи см квадратных
Ответ дал: Гость
пусть точка о-центр окружности.
угол асв-вписанный угол опирающийся на дугу ав, значит он равен 1/2 дуги вс, следовательно градусная мера дуги вс=2*асв=2*30=60*. угол аов - центральный опирающийся на дугу ав, значит он равен градусной мере дуги ав, т.е. угол аов=60*. треугольник аов - равнобедренный (ао=ов-как радиусы), значит угол оав= углу ова=(180-60): 2=60*, следовательно треугольник аов и равносторонний, значит ав=ов=6см.
тогда ам=мв=6: 2=3см.
по теореме об отрезках пересекающихся хорд имеем: ме= (ам*мв): мс=3*3: 9=1см. значит се=9+1=10см.
Другие вопросы по: Геометрия
Похожие вопросы
Знаешь правильный ответ?
Дано ab =df bc=cd am=fm доказать что mc биссектриса угла bmd...
Популярные вопросы