ответ: у остроугольного треугольника центр описанной окружности лежит внутри, у тупоугольного — вне треугольника, у прямоугольного — на середине гипотенузы. поскольку центр описанной окружности лежит на середине стороны треугольника (ao=oc=r), данный треугольник является прямоугольным с гипотенузой ac, катетами ab u вс.
Диагонали равны 32 м и 32√3 м половинки диагоналей равны 16 м и 16√3 м половинки диагоналей ромба образуют прямоугольный треугольник, гипотенузой которого является сторона ромба. отношение катетов tg α = 16√3 / 16 = √3 - табличный тангенс угла 60° так как диагонали ромба - это биссектрисы углов ромба, то угол ромба равен 2*60° = 120° острый угол ромба 180° - 120° = 60° противоположные углы у ромба равны ответ: углы ромба 60° и 120°
Ответ дал: Гость
по теореме пифагора найдем катет ас, ас=корнь из(169-144)=5см.
Популярные вопросы