Поскольку объем призмы равен произведению площади основания на высоту призмы, решение сводится к нахождению высоты призмы (так как площадь основания - площадь прямоугольного треугольника равна (1/2)*ав*вс=6). высота призмы равна высоте пирамиды в1авс, в которой боковые ребра равны, (то есть вв1=ав1=св1). если все боковые ребра пирамиды равны между собой, то вершина пирамиды в1 проецируется в центр описанной около основания окружности. центр описанной около прямоугольного треугольника окружности лежит на середине ас гипотенузы, радиус этой окружности равен половине гипотенузы. аа1с1с- квадрат, поэтому сс1=ас. вв1с1с - параллелограмм (боковая грань призмы), поэтому вв1=сс1=ас. по пифагору гипотенуза ас=√(ав²+вс²)=√(144+1)=√145. тогда радиус описанной окружности вн=(√145)/2. из прямоугольного треугольника внв1 найдем по пифагору в1н=√(в1в²-вн²)=√(145-145/4)=√435/2. тогда объем призмы равен sосн*h = (1/2)12*1*√435/2 =3√435см ≈ 62,6см³.
Ответ дал: Гость
ав=вс ас=6см
т.к. треугольник равнобедренный , то уга=угс=30град
вк-высота(явл еще и медианой и биссектрисой)
площ=1/2вс*ас
т.к.вк медиана, то ак=кс=3см
в трег авс: уга=30(сторона лежащая против угла 30=1/2 от гипотенузы)
треугавк=трегвкс(по углам и сторонам)
угв=120гр
(дальше через синус или косинус найдете сторону,после другую сторону по теореме пифагора)
Популярные вопросы