Радиус вписанной окружности правильного треугольника, выраженный через его сторону: r=√3a/6. радиус описанной окружности правильного треугольника, выраженный через его сторону: r=√3a/3. r=4√3/3 r=8√3/3
Ответ дал: Гость
пусть одна сторона прямоугольника равна х. тогда другая равна х+2. найдём его площадь.
х(х+2)=48,
х(квадрат)+2х-48=0
по теореме обратной теореме виета х1=-8 - не является решением.
х2=6.
значит одна сторона прямоугольника равна 6 см, тогда другая 8 см. по теореме пифагора найдём диоганаль прямоугольника. она равна корень из (36+64)=корень из100=10 (см).
радиус описанной около прямоугольника окружности равен половине диоганале и равен 10/2=5 (см).
Популярные вопросы