Переносим все в левую часть неравенства, получим умножим левую и правую части неравенства на (-1) и затем знак неравенства меняется на противоположный. при умножении левой и правой части на отрицательное число, знак неравенства меняется на противоположный.
Ответ дал: Гость
2sin(x)-3cos(x)=2
разделим обе части на
sqrt(2^2+s^2)=sqrt(13)
получим
(2/sqrt(13))*sin(/sqrt(13))*cos(x)=2/sqrt(13)
пусть
cos(a)=2/sqrt(13) и sin(a)=3/sqrt(13)
тогда
cos(a)sin(x)-sin(a)cos(x)=2/sqrt(13)
sin(x-a)=(2/sqrt(13)
x-a=(-1)^n*arcsin(2/sqrt(13)+pi*n
так как
cos(a)=2/sqrt(13) => a=arccos(2/sqrt(13)
тогда
x=(-1)^n*arcsin(2/sqrt(13)+pi*n+arccos(2/sqrt(13)
Ответ дал: Гость
Решение: рассмотрим функцию f(x)=sin x-x*cos(x) на промежутке [0; pi\2]. она непрерывна на этом промежутке и для каждого х из этого промежутка существует проиводная. ищем проиводную: f’(x)=cos x-cos x+x*sin x=x*sin x f’(x)> 0 на промежутке (0; pi\2),значит f(x) возрастает на (0; pi\2), f(0)=sin 0+0*cos 0=0 f(0)=0 значит при х є (0; pi\2) f(x)> f(0)=0 или sin x-x*cos(x)> 0, то есть sinx> xcosx, что и требовалось доказать.
Популярные вопросы