Находим производную y'=3*x²-12*x+12 и приравниваем её к нулю. После сокращения на 3 получаем квадратное уравнение x²-4*x+4=(x-2)²=0, откуда x=2 - единственная критическая точка. Но так как производная y' везде, кроме точки x=2, положительна, то есть не меняет знак при переходе через точку x=2, то эта точка не является точкой экстремума. И так как y'≥0, то функция y монотонно возрастает (в широком смысле) на всей области определения, которой является вся числовая ось. Поэтому наибольшее значение функция принимает в "правом" конце интервала [0;3], т.е. при x=3. Оно равно y(3)=3³-6*3²+12*3+1=10
Спасибо
Ответ дал: Гость
пусть х - число двухрублевых монет , y - число пятирублевых
монет , тогда по условию : 2x +5y = 28 (1) ; 5y = 2 (14 -x ) (2)
так как правая часть уравнения (2 ) кратна 2 , а 5 нечетно ,
то y кратно 2 , из уравнения (1) следует , что y ≤ 5 ⇒ y может
принимать только 2 значения - 2 и 4 , проверим эти числа
подстановкой в (1) :
y =2 ⇒ x = 9 ( подходит )
y = 4 ⇒ x = 4 ( подходит )
ответ : 4 монеты по 2 рубля и 4 по 5 рублей или 9 монет по 2
Популярные вопросы