Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
ответ: 8
Объяснение:
d=a7-a6=6-(-2)=6+2=8
-х²+(n-1)x+n< 1
-х²+(n-1)x+n-1< 0
д=(n-1)²+4(n-1)=n²-2n+1+4n-4=n²+2n-3
для того, что бы y=-x^2+(n-1)x+n - была целиком расположенна ниже прямой y=1, д< 0
n²+2n-3< 0
д=4+12=16
n=(-2±4)/2=-3; 1
n ∈ (-3; 1)
отв: при n ∈ (-3; 1) парабола y=-x^2+(n-1)x+n целиком расположенна ниже прямой y=1.
решенние:
инт(x^3dx/корень(x-7))=|корень(x-7)=t x=t^2+7 dx=2tdt|=
=инт((t^2+7)^3 *2t \t) dt=
=2*инт((t^6+21t^4+147t^2+343)dt=
=2*(1\7t^7+21\5t^5+49t^3+343t)+c=
=2\7*t^7+42\5t^5+98t^3+686t+c=
=2\7*(корень(x-7))^7+42\5*(корень(x-7))^5+98*(корень(x-7))^3+686*(корень(x-7))+c, где с произвольная константа
ответ: 2\7*(корень(x-7))^7+42\5*(корень(x-7))^5+98*(корень(x-7))^3+686*(корень(x-7))+c, где с произвольная константа
Популярные вопросы