a_1,\ a_1+d,\ a_1+2d,\ \ldots,\ a_1+(n-1)d, \ \ldots так что ~n-й член арифметической прогрессии равен ~{a_n}={a_1}+{ \left( n-1 \right) }d более точно: последовательность чисел (членов прогрессии), каждое из которых, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага или разности прогрессии). иначе говоря, для всех элементов прогрессии, начиная со второго, выполнено равенство: a_n=a_{n-1} + d \quad любой член прогрессии может быть вычислен по формуле: a_n=a_1 + (n-1)d \quad \forall n \ge 1 (формула общего члена) шаг прогрессии может быть вычислен по формуле: d=\frac{a_n-a_m}{n-m}, если n\neq m если шаг d > 0, прогрессия является возрастающей; если d < 0, — убывающей.
Ответ дал: Гость
1)возводим в квадрат: 4х^2 больше(=)328,х^2 больше(=)82, 9 не подходит,тогда наим. целое 10.
2)т.к. первая скобка всегда положительна, то 3а-7 больше(=)0, а больше(=)
7/3.
3)d=25-12b больше 0, 12b меньше25, и b меньше 25/12.
Популярные вопросы