Дана функция:
Найдём её производную:
Приравняем её к нулю:
Получили 2 точки возможного экстремума. Теперь выбираем числа по обе стороны от данных точек, подставляем в производную и смотрим на её знак:
y' (x_{0})= 12 > 0" class="latex-formula" id="TexFormula4" src="https://tex.z-dn.net/?f=x_%7B0%7D%3D%20%20-%201%20%3D%20%20%3E%20y%27%20%28x_%7B0%7D%29%3D%2012%20%3E%200" title="x_{0}= - 1 = > y' (x_{0})= 12 > 0">
В точке -1 производная больше нуля, поэтому функция возрастает;
В точке 0.5 производная меньше нуля, а значит функция, убывает;
y'(x_{2}) = 12 > 0" class="latex-formula" id="TexFormula6" src="https://tex.z-dn.net/?f=x_%7B2%7D%20%3D%202%20%3D%20%20%3E%20y%27%28x_%7B2%7D%29%20%3D%2012%20%3E%200" title="x_{2} = 2 = > y'(x_{2}) = 12 > 0">
В точке 2 производная больше нуля, значит функция возрастает.
В итоге получаем, что до точки 0 функция росла, между 0 и 1 – убывала, а от точки 1 – опять росла, поэтому точка 0 – максимум функции, а точка 1 – её минимум.
Популярные вопросы