повторные независимые испытания. схема бернулли. число попаданий - случайная величина, принимающая   значения от 0 до 5. найдем вероятности появления этих значений.
 вероятность значения 0.       число сочетаний из 5(выстрелов всего)  по 0(рассматриваемое значение) - это 1 - умножим на   0.5 в степени 0 и на 1-0.5 в степени 5-0.   получаем 0.03125. это 1/32.
 вероятность значения 1.       число сочетаний из 5 по 1 - это 5 - умножается на 0.5 в степени 1 и на 1-0.5 в степени 5-1. получаем 0.15625. это 5/32.
 вероятность значения 2. число сочетаний из 5 по 2 - это 10 - умножаем на 0.5 в степени 2 ина 1-0.5 в степени 5-2. получаем 0.3125. это 10/32.
 далее вероятности располагаются в обратном порядке в силу симметричности числа сочетаний и того, что 1-0.5 равно 0.5.
   
 ряд распределения: 
        0                     1                           2                                 3                       4                           5                                  
 0,3125       0,15625       0,3125             0,3125       0,15625       0,03125
   
 проверка. сумма всех вероятностей равна 1.
Популярные вопросы