Пусть x+5 - длина первого прямоугольника, x - длина второго прямоугольника, y₁ - ширина первого прямоугольника, y₂ - ширина второго прямоугольника, s₁ - площадь первого прямоугольника, s₂ - площадь второго прямоугольника, p₁ - периметр первого прямоугольника, p₂ - периметр второго прямоугольника, тогда: p₁=122 p₁=2(x+5+y₁) 122=2(x+5+y₁) 61=x+5+y₁ y₁=56-x p₂=122 p₂=2(x+y₂) 122=2(x+y₂) 61=x+y₂ y₂=61-x s₁=(x+5)(56-x) s₂=x(61-x) s₂=s₁+120 (x+5)(56-x)+120=x(61-x) 56x-x²+280-5x+120=61x-x² 56x-5x-61x=-400 -10x=-400/: (-10) x=40 значит, длина первого прямоугольника равна 40+5=45 см, ширина - 56-40=16 см, а площадь - 45*16=720 см²; длина второго прямоугольника равна 40 см, ширина - 61-40=21 см, а площадь - 40*21=840 см². ответ: s₁=720 см², s₂=840 см².
Ответ дал: Гость
-х²+(n-1)x+n< 1
-х²+(n-1)x+n-1< 0
д=(n-1)²+4(n-1)=n²-2n+1+4n-4=n²+2n-3
для того, что бы y=-x^2+(n-1)x+n - была целиком расположенна ниже прямой y=1, д< 0
n²+2n-3< 0
д=4+12=16
n=(-2±4)/2=-3; 1
n ∈ (-3; 1)
отв: при n ∈ (-3; 1) парабола y=-x^2+(n-1)x+n целиком расположенна ниже прямой y=1.
Популярные вопросы