Пошаговое объяснение:
Осевое сечение конуса - равнобедренный треугольник, образованный двумя образующими и диаметром основания
Если угол у основания этого треугольника равен 60° то и второй угол у снования 60°, следовательно, угол у вершины равен 180° - 2*60° = 60°.
Поэтому образующая l = d = 24:3 = 8 (cм).
радиус основания r = d:2 = 8:2 =4 (см).
Тогда боковая поверхность конуса
Sб = π r l = π * 4 * 8 = 32π cм2
Площадь основания это круг, находим по формуле:
Sосн.= π r^2= π 4^2= 16π см2
Площадь полной поверхности:
Sп.п=Sб+Sосн= 32π +16π=48π см2
найдем высоту согласно т. Пифагора
h=√l^2-R^2=√8^2-4^2=√64-16=√48 =6,9 см
Объем равен:
V=1/3π r^2*h= 1/3π*4^2* 6,9= 36,8π см3
Популярные вопросы