Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
ответ:
да
пошаговое объяснение:
поскольку 1^3 + 2^3 + 3^3 = 36 делится на 9, то для n = 1 утверждение верно.
предположим, что оно верно для n = k, то есть k^3 + (k + 1)^3 + (k + 2)^3 = 9m для некоторого натурального числа m. нам нужно доказать для n = k + 1.
но действительно,
(k + 1)^3 + (k + 2)^3 + (k + 3)^3 = (k + 1)^3 + (k + 2)^3 + k^3 + 27k + 9k2 + 27 =
= 9m + 27k + 9k2 + 27 = 9(m + 3k + k2 + 3)
делится на 9, и мы заключаем, что утверждение верно для любого n.
площадь пр-ка 616 м кв., а его длина 28 м. найдите площадь такого квадрата, у которого периметр равен периметру пр-ка.
616\28=22 см
p=(a+b)*2 (22+28)*2=100 100\4=25 см сторона квадрата
s=a^2 s=25*25=625 см^2
1) 7*3=21 гр -лисичек
2)21+7=28 гр-опят
3)21+28=49 гр-всего
Популярные вопросы