Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
ответ:
да
пошаговое объяснение:
поскольку 1^3 + 2^3 + 3^3 = 36 делится на 9, то для n = 1 утверждение верно.
предположим, что оно верно для n = k, то есть k^3 + (k + 1)^3 + (k + 2)^3 = 9m для некоторого натурального числа m. нам нужно доказать для n = k + 1.
но действительно,
(k + 1)^3 + (k + 2)^3 + (k + 3)^3 = (k + 1)^3 + (k + 2)^3 + k^3 + 27k + 9k2 + 27 =
= 9m + 27k + 9k2 + 27 = 9(m + 3k + k2 + 3)
делится на 9, и мы заключаем, что утверждение верно для любого n.
допустим, что один отрезок - х, тогда
х+2х=х+(х+3),
3х=2х+3,
3х-2х=3,
х=3 - длина первого отрезка,
2*3=6 или 3+3=6 - длина второго отрезка
7\45
Популярные вопросы