Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
дано: авсд-ромб
ас и вд-диагонали
ас=12 см
вд=16 см
найти: р-периметр авсд
решение:
1) ас пересекается с вд в точке о
треугольник аов-прямоугольный. т.к. известно, что диагонали ромба взаимно перпендикулярны.
по теореме пифагора найдём сторону ав.
ав=sqrt{oa^2 + ob^2}=sqrt{6^2+8^2}=sqrt{100}=10(см)
2)авсд-ромб, следовательно все его стороны равны
периметр р=4*ав=4*10=40(см)
ответ: 40 см
1) пусть хорды расположены по разные стороны от центра окружности о, тогда пусть ab=40 и cd=14
пусть om=x - расстаяние от центра до ab, тогда on -расстояние до cd=39-x
тогда из треугольника aom :
(ao)^2=(am)^2+mo^2
(ao)^2=400+x^2
и из треугольника cno
(co)^2=(cn)^2+(no)^2
(co)^2=49+(39-x)^2
так как co=oa=r, то
400+x^2=49+(39-x)^2
78x-1170=0
78x=1170
x=15
то есть om=15, тогда
(ao)^2=(am)^2+mo^2 =400+225=625
ao=r=25
так как
s=pi*r^2=625*pi
2) пусть хорды расположены по одну сторону от центра и пусть расстояние от центра до cd=x, тогда из треугольника ond
(od)^2=(on)^2+(nd)^2
(od)^2=x^2+49
с другой стороны из треугольника omb
(ob)^2=(om)^2+(mb)^2
(ob)^2=(x-39)^2+400
то есть
x^2+49=(x-39)^2+400
18x-1872=0
78x=1872
x=24
то есть on=24,тогда
(od)^2=(on)^2+(nd)^2 => (od)^2=576+49=625
od=r=25
и
пусть одна сторона х см. тогда другая 3х см. получим уравнение:
3х квад = 75.
отсюда х =5. тогда 3х = 15.
ответ: 5 см; 15 см.
r=√(р-а)(р-в)(р-с)/р, где р=1/2(а+в+с)
с=√(а²+в²)=5
r=1
Популярные вопросы