пусть треугольник bac равнобедренный, ab=ac=10 см.
возьмем произвольную точку k на основании bc и проведем km||ac иkn||ab
km=an, kn=am -противоположные стороны параллелограмма.
докажем, что km=bm. угол 2=углу 4 как соответственные углы при ac||km и секущей kc. но угол 4=углу 1 (углы при основании равнобедренного треугольника). отсюда угол 2=углу 1. значит треугольник bmk равнобедренный и km=bm как его боковые стороны.
аналогично докажем, что kn=nc. угол 3=углу 1 как соответственные углы при ab||kn и секущей kb. но угол 1=углу 4 (углы при основании равнобедренного треугольника). отсюда угол3 =углу 4. значит треугольник knc равнобедренный и kn=nc как его боковые стороны.
авс-основание пирамиды, s-вершина пирамиды, о-проекция s на основание и точка пересечения высот основания
из прямоугольного треугольника аоs
ао=asxcos60, а sо=asxsin60
ao=8x0.5=4
sо=8x√3/2=4√3 - это высота пирамиды h
ao=2/3ak, где ак-высота основания h
ак=3/2ао
ак=3/2х4=6
из правильного треугольника авс, где высота и медиана по теореме пифогора находим сторону основания а
ак²=а²-(а/2)²
а²=4/3хак²
а=4√3
площадь основания равна
s=(ah)/2
s=(4√3x6)/2=12√3
v=(sh)/3
v=(12√3x4√3)/3=48
ответ: объем пирамиды равен 48см³
Ответ дал: Гость
в прямоугольном треугольнике сторона , лежащая напротив угла в 30 градусов равна полоаине длины гипотенузы. гипотенуза с=1, катет а=1/2
так как катет прямоугольного треугольника равен средней гипотенузы и прекции этого катета на гипотенузу, то (гипотенуза с делится на 2 отрезка а1 и в1)
Популярные вопросы