т.к все рёбра пирамиды равны, то вершина проектируется в центр описанной около треугольника окружности. а центр описанной окружности возле прямоугольного треугольника лежит на середине гипотенузы. пусть прямой угол с катет ас=12 см угол в= 60 вершина пирамиды р . найдём гипотенузу ав= 12\ sin 60= 12: на корень из 3 делённое на 2=24 : на корень из 3 см. тогда второй катет вс= 12* tg30= 12*1\ на корень из 3= 12 делить на корень из 3. найдём высоту пирамиды . пусть середина гипотенузы точка о тогда высота во в треугольнике оар ар=13 оа= 12 делить на корень из 3 ор= корню из 169- 144\3= 169-48 корню из 121 и равна 11 см. найдём объём ас*вс\2* ор*1\3 = 12*12\ корень из 3 *1\6*11= 264 делить на корень из 3. кв.см
Ответ дал: Гость
у остроугольного треугольника центр описанной окружности лежит внутри, у тупоугольного — вне треугольника, у прямоугольного — на середине гипотенузы. следовательно, чтобы центр описанной окружности лежал на ас, сторона ас должна быть гипотенузой треугольника, т.е она должна лежать против угла 90 градусов, противолежащий угол авс, равен 80 град, следовательно центр окружности не лежит на ас
Популярные вопросы