Строишь треугольник со сторонами ав и вс и основанием ас, затем проводишь высоту из точки в к основанию.далее заходим в прямоугольный треугольник авн( н-это вторая точка высоты, она лежит на осеовании). поскольку угол в =120 градусам, то углы а и с равны 30 градусам каждый((180 градусов-120 градусов)/2=30градусов). ну а по теореме, что катет лежащий против угла в 30 градусов равен половине гипотинузы, находим высоту вн(вн=9/2=4,5см.)ну и в последнюю очередь находим площадь по формуле s=1,5ас*вн. s= 6*4,5=27 см.
Ответ дал: Гость
пусть авсd-равнобокая трапеция. проведём через вершину в прямую, параллельную стороне аd. она пересечёт луч dc в некоторой точке е. четырёхугольник авеd-параллелограмм. по свойству параллелограмма ве=аd. по условию ad=bc (трапеция равнобокая), значит, треугольник все равнобедренный с основанием ес.углы треугольника и трапеции при вершине с , а унлы при вершинах e и d равны как соответственные углы при пересечении параллельных прямых секущей.поэтому угол аdc= углу bcd.ч.т.д.
Ответ дал: Гость
рассмотрим основание призмы - треугольник abc, в нем ab=5, ac=3,угол bac=120°, тогда за теоремой косинусов находим третью сторону треугольника
(bc)^2=(ab)^2+(ac)^2 - 2*ac*bc*cos(120°)
(bc)^2=25+9+15=49 => bc=7
отсюда следует что сторона вс в призме создает наибольшую площадь боковой грани, то есть
площадь полученного шестиугольника будет меньше площади данного шестиугольника на шесть площадей равных равнобедренных треугольников. у этих треугольников боковые стороны равны ½ стороны данного шестиугольника, а угол между ними равен 120⁰.
sδ= ½ ab · sin γ
s = ½ · ¼a² · (√3)/2 = (кв.ед.)
из формулы площади шестиугольника s= выражаем сторону а:
подставляя в формулу площади треугольника, находим, что sδ = 8/3 кв.ед.
6sδ = 16 кв.ед.
площадь полученного шестиугольника равна 64-16=48 (кв.ед.)
Популярные вопросы