в основании правильной 4-уг. пирамиды лежит квадрат, так как боковое ребро образует угол в 45 градусов, то мы получаем равнобедренный прямоугольный треугольник, в котором высота и 1/2 диагонали квадрата катеты, а боковое ребро -гипотенуза , по теореме пифагора находим катеты (а), они у нас равны между собой и равны а^2+а^2=4^2 2а^2=16 а^=8 а=2v2см - это мы нашли высоту
площадь боковой поверхности пирамиды равна 4 площадям боковых граней, сторона квадрата (b в квадрате), лежащего в основании равна 2а в квадрате (по теореме пифагора) b^2=2а^2=2*(2v2)^2 b=4см найдем апофему (с) с^2=4^2-(b/2)^2=16-4=12 с=v12 c=2v3 cм
s=4*(1/2)*b*c=2*4*2v3=16v3 кв.см
Ответ дал: Гость
1 вариант
ав=а√2, ад=а, < а=45
аа1=вк=авsin45=ав/√2=а, вк-высота на ад
др-высота на ав
др=ад/√2=а√2/2
tgд'рд=д'д/др=а/(а√2/2)=√2=1,41
< д'рд=54°43'
2 вариант
ав=а, ад=а√2, < а=45
аа1=вк=авsin45=ав/√2=а√2, вк-высота на ад
др-высота на ав
др=ад/√2=а
tgд'рд=д'д/др=а√2/а=√2=1,41
< д'рд=54°43'
отв: < д'рд=54°43' угол между плоскостью abcd и плоскостью abc'd',
Ответ дал: Гость
треугольник авс угол а=90*
пусть ав=х тогда ас=х+5
площадь треугольника = х(х+5)/2
102=(х2+5х)/2 раскрываем скобки и решаем как квадратное уравнение
получаем ав=12 ас=17
Ответ дал: Гость
углы при основании равны по (180 - 120) / 2 = 30°, поэтому высота. проведенная к основанию, равна 10 * tg 30° = 10 / √ 3 см., площадь
Популярные вопросы