найти угол между диагональю куба и диагональю основания
диагональю основания=10√2
tgφ=10/(10√2)=0.7071
φ=35°16'
Ответ дал: Гость
Авс -треугольник осевого сечения, ав=вс=са=а, r=(корень3)*а/6 -радиус вписанной окружности в треугольник он же радиус сферы вписанной в конус, r=а/2 -радиус основания конуса, l=ав=а -длина образующей, sсф=4*пи*r^2, sбок.кон=пи*r*l, sсф/sбок.кон=(4*пи*r^2)/(пи*r*l)=(4(3*а^2/36))/((а/2)а)=(а^2/3)/(a^2/2)=2/3
Популярные вопросы