Mo=on(т.к. радиусы)доказываем равенство треугольников по свойству касательных из одной точки,тогда угол kon=mok и они по 60 градусов. 120/2=60 градусов.есть два прямоугольных треугольника. радиусы on и om находятся по свойство угла в 30 градусов, т.е.2on=ok2on=12 /2(делили обе части)on=6 затем находим всё по теореме пифагора.kn+on=ok(все величины в квадрате)kn2+36=144kn2=144-36=108 градусов.корень из kn=корень из 108 радусов и это 6 корней из 3.kn=km(по свойству отрезков касательных)ответ: kn=km=6 корней из 3. отрезки касательных, проведённых из одной точки к окружности равны и образуют равные углы с прямой, проходящей через центр окружности и точку, из которой проведены касательные, поэтому мк=кn, угол окn=углу окм, угол омк=углу оnк=90 градусов по свойству касательных, тогда угол кот= углу ком=120: 2=60 градусов. по соотношениям в прямоугольном треугольнике км=ок*sin60=12*√3/2=6√3
1. δbdc, вписанный в окружность можно представить как < bdc что опирается на хорду вс.
в δсав < сав тоже опирается на отрезок вс, причем < сав=< bdc по условию. по теореме о вписанных углах в окружность равные углы опираются на одну и ту же хорду. значит δсав вписан в туже окружность с площадью s=25π/4.
определим радиус:
s=π·r² ⇒ r=√s/π
r=√25π/4π=5/2=2.5
2. рассмотрим чет. abcd. все четыре точки лежат на одной окружности, значит четырехугольник вписан в данную окружность.
вписать можно только тот выпуклый четырехугольник у которого сумма противоположных углов равна 180°. то есть
< bad+< bcd=180° < bcd=180°-90°=90°
выпуклый четырехугольник с двумя противоположными прямыми углами являевся прямоугольником.
s=a·b=3·√16-9=3√7(кв.ед.)
Ответ дал: Гость
из середины ас(точка т) восстанови перпендикуляр до пересечения с срединным перпендикуляром из середины ав. получим точку о. ( тогда центр впис. окр-ти назови о1)
найдем радиус опис. окр-ти r:
r = abc/4s = 5*7*8/(4*10кор3) = 7/кор3
тогда в прямоугольной трапеции focot:
осf = rc = 10кор3)/3, ft = 4+2 = 6, от = кор(r^2 - 16) = кор3)/3
Популярные вопросы