Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
правильный шестиугольник состоит из 6 равнесторонних треугольников,
рассмотрим один такой треугольник. в нм высота равна r, определим сторону этого треугольника, пусть она будет равна x, тогда по теореме пифагора
x^2+x^2/4=r^2 => 3x^2/4=r^2 => x^2=4r^2/3 => x=2r/sqrt(3)
тогда площадь треугольника = (1/2)*r*2r/sqrt(3)=r^2/sqrt(3)
а площадь многоугольника (правильного) = 6*r^2/sqrt(3)=r^2*sqrt(36)/sqrt(3)=r^2*sqrt(12)=2*sqrt(3)*r^2
что и надо было доказать
площадь треугольника находим по формуле герона:
s = sqrt( p (p-a) (p-b) (p-c) ),
где sqrt - корень квадратный, р - полупериметр, который высчитывается по ф-ле: p = (a+b+c)/2, a,b,c - стороны треугольника. т.е.
р = (10+10+16)/2 = 18
s = sqrt 18 (18-10)(18-10)(18-16)
s = sqrt2304
s = 48
вроде так))
в равнобедренном треугольнике биссектриса проведенная к основанию является высотой и медианой. найдем длину основания треугольника:
√10²-8²=√100-64=√36=6 см, длина основания треугольника а= 2 *6 = 12 см.
радиус вписанной окружности: r=s/p
радиус описанной окружности: r = abc/4s
s= 12* 8 /2 = 48 cм²
p=(12 + 10 + 10)/2 = 16
r = 48/16 = 3 cм
r = 12 * 10 * 10 / (4*48) =25/4 = 6,25 cм
r=(авс)/√((а+в++в+с)(а-в+с)(а+в-с))
r=15*16*17/√((15+16++16+17)(15-16+17)(15+16-17))=4080/√(48*18*16*14)=4080/√193536=4080/440=9,27 см. -радиус описанной окр. δавс
радиус описанной окр. δавс > радиуса сферы, δ не может быть вписан в сферу.
т.о центр сферы
т. д центр описанной окр. δавс
од -расстояние от центра сферы до плоскости треугольника
оа -радиус сферы
од²=оа²-r²
Популярные вопросы