пусть у-высотра трапеции, рассмотрим 2 прямоугольных треугольника, основания которых равны х, и 10-х.
(10-х)²+у²=6² х²+у²=8²
х²=8²-у²
(10-х)²+у²=100+х²-20х+8²-х²=6²
100+64-36=20х
128=20х
х=6.4(дм)=64(см)
у=4.8(дм)=48(см)
ответ: высота трапеции равна 48 см.
Ответ дал: Гость
Т.к. отрезок ав пересекает ось цилиндра, они лежат в одной плоскости. осевое сечение цилиндра на рисунке. δков = δноа по катету и прилежащему острому углу (kb = ah = r, ∠ков = ∠ноа как вертикальные) ⇒ ко = он, ао = ов = ав/2 = 2√3 δков: ∠окв = 90°, кв = ов/2 = √3 как катет, лежащий напротив угла в 30°. r = √3 ок = ов·cos30° = 2√3·√3/2= 3 ⇒ kh = 6 h = 6 высота цилиндра v = sосн · h = πr²·h = π · 3 · 6 = 18π
Популярные вопросы