Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
a1+(a1+d)+(a1+2d)=3
a1^3+(a1+d)^3+(a1+2d)^3=4
3a1+3d=3 => a1+d=1 => a1=1-d
подставим во второе уравнение
(1-d)^3+1^3+(1+d)^3=4
(1-d)^3+(1+d)^3=3
(d+1)^3-(d-1)^3=3
(d^3+3d^2+3d+-3d^2+3d-1)=3
6d^2-1=0
6d^2=1
d=±1/sqrt(6)
если d=-1/sqrt(6),то
a1=1-d=1+1/sqrt(6)
a2=a1+d=1/sqrt(6)-1/sqrt(6)=1
a3=a2+d=1-1/sqrt(6)
если d=1/sqrt(6), то
a1=1-d=1-1/sqrt(6)
a2=a1+d=1-1/sqrt(6)+1/sqrt(6)=1
a3=a2+d=1+1/sqrt(6)
пусть (14+х) - скорость лодки по течению
тогда (14-х) - скорость против течения
48/(14-x) - 48/(14+x) = 1
48*(14+x) - 48*(14-x) = (14-x)*(14+x)
48*14 + 48x - 48*14 +48x=196-x^2
x^2+96x-196=0
d=96*96+4*196=10000=100 ^2
x1=(-96-100)/2=-98 - не удовл. условию
х2=(-96+100)/2=2 км/ч - скорость течения реки
решается пропорцией:
3/5 - 8,4
1/4 - х
0,6х = 8,4 * 0,25
0,6х = 2,1
х = 3,5 см. длина отрезка
ответ: 3,5 см.
1. х∈(-∞; ∞)
2. х∈(-∞; ∞)3. sinx≠0
х≠пn, n∈z.
Популярные вопросы