Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
а1+а2=40 а2+а3=60 a1+a1*g=40 a1*g+a1*g*g=60 a1(1+g)=40 a1g(1+g)=60 разделим второе равенство на первое g=60\40=3\2 найдём а1 а1(1+g)=40
a1(1.5+1)=40 a1= 40\2.5 a1=16 a2= 16*1.5=24 a3= 24*1.5= 36.
для арифметической прогрессии сn=с1+d(n-1)
тогда с7=с1+(7-1)d
21-30=6d
d=-1.5
для cn=-6 получим: -6=30+(n-,5)
-36=(n-,5)
n-1=24
n=25
-6 является 25-м членом прогрессии
а1=-21, d=3, а(20)=а1+19d=36, s=(a1+a(20))*10=150
f(x)=5/4 x^4 - x^3 + 6
f`(x)=5/4*4*x^3 - 3x^2=5x^3 -3x^2
чтобы прямые были параллельны, надо, чтобы совпадали их угловын коэффициенты. у прямой у=2 угловой коэффициент равен нулю.
поэтому f`(x)=0
5x^3 -3x^2=0
x^2(5x-3)=0
x=0 или 5х-3=0
5х=3
х=3/5
ответ: в точках 0 и 3/5
Популярные вопросы