Похоже, тут опечатка. должно быть 3cos^2 x. 5sin^2 x + 3*2sin x*cos x - 3cos^2 x = 4sin^2 x + 4cos^2 x переносим все налево sin^2 x + 6sin x*cos x - 7cos^2 x = 0 делим все на cos^2 x tg^2 x + 6tg x - 7 = 0 квадратное уравнение относительно tg x (tg x - 1)(tg x + 7) = 0 1) tg x = 1; x1 = pi/4 + pi*k 2) tg x = -7; x2 = -arctg(7) + pi*n если же опечатки нет, то получается уравнение 4 степени 5sin^2 x + 3*2sin x*cos x - 3(cos 2x)^2 = 4sin^2 x + 4cos^2 x 5sin^2 x + 6sin x*cos x - 3(cos^2 x - sin^2 x)^2 = 4sin^2 x + 4cos^2 x3(cos^4 x-2sin^2 x*cos^2 x+sin^4 x)-sin^2 x- 6sin x*cos x+4cos^2 x = 03sin^4 x-sin^2 x+3cos^4 x+4cos^2 x-6sin^2 x*cos^2 x-6 sin x*cos x = 0как это решать дальше - непонятно. если разделить на cos^4 x, то3tg^4 x - tg^2 x/cos^2 x + 3 + 4/cos^2 x - 6tg^2 x - 6tg x/cos^2 x = 0что тоже оптимизма не добавляет.
Популярные вопросы