Радиус описанной окружности равностороннего треугольника равен 8.найдите периметр треугольника и радиус вписаной окружности. центр и описанной, и вписанной окружности правильного треугольника лежит в точке пересечения медиан ( высот/биссектрис). медианы точкой пересечения делятся в отношении 2: 1, считая от вершины. причем радиус описанной окружности содержит 2/3, радиус вписанной 1/3 медианы ( высоты). следовательно, и радиусы описанной и вписанной окружности относятся так же: r: r=2: 1 r=8, ⇒ r=8: 2= 4 высота данного треугольника h=8+4= 12 сторона треугольника а=h: cos(60° )=8√3 периметр р=3*8√3=24√3 ответ: р=24√3 r=4
Ответ дал: Гость
пусть х - одна часть. по теореме о сумме углов треугольника, их сумма равна 180гр. составим уравнение:
180=2х+3х+5х; 180=10х; х=18. 18гр. - одна часть.
угол1=18гр.×2=36гр.
угол2=18гр.×3=54гр.
угол3= 18гр.×5=90гр.
Ответ дал: Гость
в равнобедренном треугольнике биссектриса проведенная к основанию является высотой и медианой. найдем длину основания треугольника:
√10²-8²=√100-64=√36=6 см, длина основания треугольника а= 2 *6 = 12 см.
Популярные вопросы