Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
применить свойство:
bd^2=ad*bc
576=ad*324
ad=576/324
по т. пифагора найти ab, cos a=ad/ab
пусть точка о-центр окружности.
угол асв-вписанный угол опирающийся на дугу ав, значит он равен 1/2 дуги вс, следовательно градусная мера дуги вс=2*асв=2*30=60*. угол аов - центральный опирающийся на дугу ав, значит он равен градусной мере дуги ав, т.е. угол аов=60*. треугольник аов - равнобедренный (ао=ов-как радиусы), значит угол оав= углу ова=(180-60): 2=60*, следовательно треугольник аов и равносторонний, значит ав=ов=6см.
тогда ам=мв=6: 2=3см.
по теореме об отрезках пересекающихся хорд имеем: ме= (ам*мв): мс=3*3: 9=1см. значит се=9+1=10см.
рассмотрим основание призмы - треугольник abc, в нем ab=5, ac=3,угол bac=120°, тогда за теоремой косинусов находим третью сторону треугольника
(bc)^2=(ab)^2+(ac)^2 - 2*ac*bc*cos(120°)
(bc)^2=25+9+15=49 => bc=7
отсюда следует что сторона вс в призме создает наибольшую площадь боковой грани, то есть
sбок.гр=bc*h => h=35/7=5
найдем площадь основания призмы
sосн=ab*ac*sin(120°)/2 => sосн=5*3*sqrt(3)/(2*2)=15sqrt(3)/4
далее находим объем призмы
v=sосн*h =15sqrt(3)/4 * 5=75sqrt(3)/4
Популярные вопросы