1.в сечении мы получили прямоугольник, причем длинной будет высота цилиндра, т.е. 36=6*а а=6(см)-хорда, тогда рассмотрим треугольник 2 радиуса и найденная хорда, высота его по условию равна 4, тогда радиус равен корень из (6/2)^2+4^2=9+16=5^2 т.е. радиус цилиндра равен 5. 2.рассмотрим первое осевое сечение-это равнобедренный равнобедренный треугольник с углом при вершине 120 градусов и высотой 1, проведем высоту и получим прямоугольный треугольник с углом 60 и катетом 1, по теореме, о тем, что напротив угла 30 градусов находится катет в 2 раза меньший гипотенузы, получим, что гипотенуза равна 2. а гипотенуза является образующей, рассмотрим 2ое сечение теперь это равносторонний треугольник т.к. угол при вершине 60 градусов. а площадь его s= 2*2* sin 60/2 ответ: s=√3
Ответ дал: Гость
луч ав начинается в т.а и через т.в идет дальше( ограничен только со стороны т.а)
прямая ав- проходит через а и в, но бесконечна(дальше а и в идет)
луч
прямая
отрезок (ограничен а и в)
Ответ дал: Гость
ав=r - хорда
о - центр окружности
треугольник аов - равносторонний, все его углы равны по 60 град.
обозначим внутренние односторонние углы, образованные при пересечении двух параллельных прямых секущей прямой альфа и бета, а точки пересечения параллельных прямых с секущей буквами а и в.
начертим биссектрисы углов альфа и бета. они пересекутся в точке с.
угол вса=альфа: 2
угол асв=бета: 2
альфа+бета=180* (по теореме), следовательно
альфа: 2+бета: 2=90*
искомый угол с треугольника авс равен 180-(альфа: 2+бета: 2)=
Популярные вопросы