На мой взгляд это странное условие (странное в силу отсутствия картинки), может быть расшифровано так: дан прямоугольный треугольник с известной гипотенузой c=4 и известной проекцией a_c катета a на гипотенузу. требуется найти катеты a, b, проекцию b_c катета b на гипотенузу и высоту, опущенную из вершины прямого угла. по известной формуле a^2=c·a_c=4·1=4⇒a=2. b_c=c-a_c=4-1=3; b^2=c·b_c=4·3⇒b=2√3 наконец, высоту можно найти или как среднее a_c и b_c: h^2=a_c·b_c=1·3⇒h=√3, или по формуле (a·b)/c=(2·2√3)/4=√3
Спасибо
Ответ дал: Гость
1) 90*0.4=36 - вае
2) 90-36=54 сав
Ответ дал: Гость
проведем высоты треугольников мо и ко и соединим точки мк, получим новый равносторонний треугольник со стороной, равной высоте треугольника мав или кав, найдем высоту ко=мо=км=v6*6-3*3=v25=5 (v6*6-3*3, следует читать корень из разности квадратов 6 и 3) , расстояние между вершинами м и к равно 5 см
Другие вопросы по: Геометрия
Похожие вопросы
Знаешь правильный ответ?
Втреугольнике на рисунке 157 ac = 1 , c = 4 . найдите a, b, bc, h...
Популярные вопросы